Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
798457 | Journal of Materials Processing Technology | 2010 | 5 Pages |
A1050 porous aluminum is fabricated by the FSP route and the effect of the tool rotating rate on the porosity and morphology of the pores is investigated. To fabricate high-porosity porous aluminum with a uniform pore size distribution, a certain amount of stirring action is necessary; however, excessive stirring action is ineffective. A sufficiently uniform mixture is realized by traversing the FSP tool two times at a tool rotating rate exceeding 2200 rpm. The results indicate the minimum necessary amount of stirring action and will provide a guideline for improving productivity. Also, to improve the morphology of pores, optimizing the amount of Al2O3 is effective. Closed-cell porous aluminum with a porosity of about 80% was successfully fabricated by 2-pass FSP at 2200 rpm with the addition of 7 mass% Al2O3, a holding temperature of 998 K and a holding time of 10 min.