Article ID Journal Published Year Pages File Type
798680 Journal of Materials Processing Technology 2009 9 Pages PDF
Abstract

Glass fibre-reinforced plastics (GFRP) composite materials are used in many different engineering fields. The need for machining of GFRP composites has not been eliminated fully. The tool wear reduction is an important aspect during machining. In the present work, an attempt has been made to assess the factors influencing tool wear on the machining of GFRP composites. Experimental design concept has been used for experimentation. The machining experiments are carried out on lathe using two levels of factors. The factors considered are cutting speed, fibre orientation angle, depth of cut and feed rate. A procedure has been developed to assess and optimize the chosen factors to attain minimum tool wear by incorporating (i) response table and effect graph; (ii) normal probability plot; (iii) interaction graphs; (iv) analysis of variance (ANOVA) technique. The results indicated that cutting speed is a factor, which has greater influence on tool flank wear, followed by feed rate. Also the determined optimal conditions really reduce the tool flank wear on the machining of GFRP composites within the ranges of parameters studied.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, ,