Article ID Journal Published Year Pages File Type
7987322 Nuclear Materials and Energy 2018 5 Pages PDF
Abstract
Phase separation in Fe-Cr binary alloys irradiated with neutrons at 473 K and 573 K was investigated using positron annihilation spectroscopy. Using positron annihilation coincidence Doppler broadening (CDB) measurements, the phase separation progress was observed in neutron-irradiated samples at 473 K and 573 K. Vacancy clusters were detected in Fe-xCr (x = 0, 9, 15, 30, 45, 50, and 100) during 473 K irradiation using positron annihilation lifetime measurements, but were not detected in Fe-xCr (x = 70, 85, and 91) irradiated at 473 K or in any samples irradiated at 573 K. Additionally, in Fe-xCr (x = 70, 85, and 91) irradiated at 473 K, all positrons were annihilated with core Fe electrons as determined from CDB ratio curves. Thus, vacancy clusters were not detected in the Fe-rich phase. There was a possibility that vacancy clusters are formed in the Cr-rich phase, but they were not detected by the PAS. Therefore, another method is necessary to investigate this further. Vickers hardness tests indicated that neutron-irradiated samples were harder than unirradiated samples. The contribution of phase separation and neutron-irradiation defects to increased hardness was dependent on the irradiation conditions including temperature and dose.
Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , , , , , ,