Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7987404 | Nuclear Materials and Energy | 2017 | 5 Pages |
Abstract
To study the transport of Li species in the plasma with real-time Li aerosol injection on EAST, a model has been developed by reducing Braginskii's equations, and implemented in the frame of BOUT++. The simulation results show that Li atoms propagate inwards since the Li injection, and their penetration depth depends on both the local plasma conditions along their path and initial injection velocity. It is also found that Li ions accumulate rapidly in the edge, and only a small fraction of Li species can transport cross the separatrix into the core. In the poloidal direction, Li ions drift swiftly downwards along the field lines, and transport much faster at the high field side than at the low field side. The interaction between background plasma and Li species plays a critical role in determining the edge plasma profile. It is found that real-time Li injection raises the plasma density in the pedestal region and reduces the plasma temperature, just as has been observed experimentally.
Keywords
Related Topics
Physical Sciences and Engineering
Energy
Nuclear Energy and Engineering
Authors
Li N.M., Sun J.Z., Wang Z.H., Xu X.Q., Sun Z., Wang L., Hu J.S., Wang D.Z.,