Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7987444 | Nuclear Materials and Energy | 2017 | 6 Pages |
Abstract
As High-Z materials will likely be used as plasma-facing components (PFCs) in future fusion devices, the erosion of high-Z materials is a key issue for high-power, long pulse operation. High-Z material erosion and redeposition have been studied using tungsten and molybdenum coated samples exposed in well-diagnosed DIII-D divertor plasma discharges. By coupling dedicated experiments and modelling using the 3D Monte Carlo code ERO, the roles of sheath potential and background carbon impurities in determining high-Z material erosion are identified. Different methods suggested by modelling have been investigated to control high-Z material erosion in DIII-D experiments. The erosion of Mo and W is found to be strongly suppressed by local injection of methane and deuterium gases. The 13C deposition resulting from local 13CH4 injection also provides information on radial transport due to EâàB drifts and cross field diffusion. Finally, D2 gas puffing is found to cause local plasma perturbation, suppressing W erosion because of the lower effective sputtering yield of W at lower plasma temperature and for higher carbon concentration in the mixed surface layer.
Related Topics
Physical Sciences and Engineering
Energy
Nuclear Energy and Engineering
Authors
R. Ding, D.L. Rudakov, P.C. Stangeby, W.R. Wampler, T. Abrams, S. Brezinsek, A. Briesemeister, I. Bykov, V.S. Chan, C.P. Chrobak, J.D. Elder, H.Y. Guo, J. Guterl, A. Kirschner, C.J. Lasnier, A.W. Leonard, M.A. Makowski, A.G. McLean, J.G. Watkins,