Article ID Journal Published Year Pages File Type
79875 Solar Energy Materials and Solar Cells 2009 7 Pages PDF
Abstract

In this work, room temperature ionic liquid (RTIL)—1-butyl-3-methyl-imidazolium hexafluorophosphate ([BMIM]PF6)—was employed to fabricate dual polymer electrochromic devices (DPECDs). [BMIM]PF6 was used as the electrolyte both in the electrochemical synthesis of conducting polymers (CPs) and in the fabrication of DPECDs. The electrochemically deposited poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(3-methylthiophene) (PMeT) were employed to serve as two complementary coloring electrochromic thin films. Through combining these two electrochromic layers, the assembled DPECDs were found to switch between deep red and deep blue, which are two primary colors for a display. By employing RTIL as electrolyte, the devices retained 65% of their optical contrast and electroactivity after 5×103 deep double potential steps, showing enhanced stability and durability. The DPECDs also exhibited stable electrochromic performance, with a maximum optical contrast of 26% at 665 nm, and achieved a high coloring efficiency of 460 cm2 C–1.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , ,