Article ID Journal Published Year Pages File Type
7987941 Solid State Communications 2018 10 Pages PDF
Abstract
Electronic structure of the Cs/n-GaN nano-interface has been studied in situ via synchrotron-based photoelectron spectroscopy by excitation in the energy range of 70-400 eV. The GaN sample was grown by an original method of epitaxy of low-defect unstressed nanoscaled films on AlGaN/SiC/Si substrate. Changes in the surface state spectra and in the Ga 3d, Cs 4d, Cs 5p, N 1s core level spectra have been revealed under different cesium coverages. The intrinsic surface states for the clean GaN surface at binding energies of ∼5.0 eV and ∼7.0 eV are attenuated during Cs adsorption. Simultaneously three Cs induced surface states are found to arise. Drastic changes in the surface state spectrum were ascertained and shown to be originated from the local interacting Ga dangling bonds and adsorbed Cs atoms initiating the electron redistribution effect with formation of the semiconductor-like Cs/n-GaN interface.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , , , ,