Article ID Journal Published Year Pages File Type
7988215 Intermetallics 2018 10 Pages PDF
Abstract
In the present work, the role of Zr addition on the microstructure and phase formation of hypoeutectic Nb−16 at. % Si alloy has been investigated. The results showed that both binary and alloy with 2 at. % Zr resulted in two phase microstructures composed of Nbss and Nb3Si phases. In contrast, the alloys with 4 at. % Zr and 6 at. % Zr revealed two phase microstructures composed of Nbss and α−Nb5Si3 phases. The orientation relationship (OR) obtained between eutectoid lamellar structure comprising of Nbss and α−Nb5Si3 phases is (110) Nb//(110) Nb5Si3. The equilibrium microstructures consisting of Nb and α−Nb5Si3 phases were obtained in as cast condition when the Zr concentration is above 2 at.%. The addition of Zr accelerated the dissociation kinetics of Nb3Si phase in to Nbss and α−Nb5Si3 phases during solidification. The formation of α−Nb5Si3 phase in the as cast condition eliminates heat treatment required for decomposition of Nb3Si phase in Nb-Si alloys.
Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , ,