Article ID Journal Published Year Pages File Type
79883 Solar Energy Materials and Solar Cells 2009 8 Pages PDF
Abstract

We have prepared two two-dimensional polythiophenes (2D-PTs; P1 and P2) possessing alkyl-thiophene side chains by Stille coupling reactions. Optical measurements indicate that the bandgaps of P1 and P2 being 1.98 and 1.77 eV, respectively. P2 displayed a red-shift in its absorption spectrum because of the longer length of its conjugated side chains. Desirable highest occupied molecular orbital (HUMO) and lowest unoccupied molecular orbital (LUMO) energy levels were obtained from electrochemical studies, which suggested that these systems would exhibit high open-circuit voltages when blended with fullerene as electron acceptors. The hole mobility (thin film transistor (TFT) measurement) of P1 and P2 are 3.5×10−4 and 4.6×10−3 cm2 V−1 s−1, respectively. A power conversion efficiency of 2.5% is obtained under simulated solar illumination (AM 1.5G, 100 mW cm−2) from a polymer solar cell comprising an active layer containing 25 wt% P1 and 75 wt% [6,6]-phenyl-C71 butyric acid methyl ester (PC71BM).

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , ,