Article ID Journal Published Year Pages File Type
79904 Solar Energy Materials and Solar Cells 2009 5 Pages PDF
Abstract

In the present study we analyzed nanocrystalline silicon (nc-Si)-based p–i–n thin film structures (SiC/nc-Si/n-doped amorphous Si) on glass produced by radio-frequency plasma-enhanced chemical vapor deposition. The crystallinity of the nc-Si layer was modified by varying the deposition conditions ([SiH4]/[H2] ratio in the plasma and radio-frequency power). Structural properties of the samples (crystalline fraction and crystal size distribution) were inferred by Raman spectroscopy. Different optical spectroscopy methods were combined for the determination of the optical constants in different spectral ranges: spectrophotometry, ellipsometry and photothermal deflection spectroscopy. Characterization results evidence that the optical properties of the nc-Si layers are strongly connected with the layer structural properties. Thus, the correlation between density of defects, Urbach energy, band-gap and line-shape of dielectric function critical points with the crystalline properties of the films is established.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , ,