Article ID Journal Published Year Pages File Type
799240 Journal of Terramechanics 2006 15 Pages PDF
Abstract

The study of tillage tool interaction centers on soil failure patterns and development of force prediction models for design optimization. The force-deformation relationships used in models developed to date have been considering soil as a rigid solid or elasto-plastic medium. Most of the models are based on quasi-static soil failure patterns. In recent years, efforts have been made to improve the conventional analytical and experimental models by numerical approaches. This paper aims at reviewing the existing methods of tillage tool modeling and exploring the use of computational fluid dynamics to deal with unresolved aspects of soil dynamics in tillage. The discussion also focuses on soil rheological behaviour for its visco-plastic nature and its mass deformation due to machine interaction which may be analyzed as a Bingham plastic material using a fluid flow approach. Preliminary results on visco-plastic soil deformation patterns and failure front advancement are very encouraging. For a tool operating speed of 5.5 m s−1, the soil failure front was observed to be about 100-mm forward of the tool.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, ,