Article ID Journal Published Year Pages File Type
7996910 Journal of Alloys and Compounds 2016 28 Pages PDF
Abstract
Ultra-fine Gd-doped ceria (GDC) powders were synthesized via co-precipitation using ammonium carbonate as the precipitant. The crystallite size of the resultant GDC powders was measured as ∼33 nm. The dilatometry test of the powder compacts and the relative density measurement of sintered pellets with various sintering temperatures revealed the synthesized nano-GDC powders had superior sinterability compared to commercial GDC powders (e.g., 96% vs 78% in relative density at 1300 °C, respectively). Based on the total conductivity measurement of the co-precipitated GDC via electrochemical impedance spectroscopy, we found there was an optimum sintering temperature range (1300-1400 °C) to achieve both high density and high conductivity due to significant increase in grain boundary resistance at higher temperature (1500 °C). Moreover, the nano-sized and highly sinterable co-precipitated GDC effectively enhanced oxygen reduction reaction at the La0.6Sr0.4Co0.2Fe0.8O3−δ/GDC composite cathode due to increase in active reaction sites as well as enhanced phase connectivity in 3D-bulk at lower sintering temperatures.
Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , , , , , , ,