Article ID Journal Published Year Pages File Type
799718 Journal of the Mechanics and Physics of Solids 2010 18 Pages PDF
Abstract

The deformation and damage micromechanisms of a glass-fiber non-woven felt were analyzed with a combination of experiments and simulations. Tensile tests were carried out on unnotched and notched rectangular panels to ascertain the physical phenomena which control the development of damage. It was found that fracture began by interbundle bond fracture followed by frictional sliding between bundles, leading to the localization of damage in a wide band. The mechanical behavior of the non-woven felt until final fracture was modeled by the finite element simulation of a 2D random network in which the geometric characteristics of the network and the constituent properties were obtained from experiments on the actual non-woven felt. The simulation results were in very good agreement with the experiments in terms of the macroscopic response and of the microscopic mechanisms. They contributed to explain different features of the experimental data, including the effect of specimen dimensions on the strength and the notch-insensitive behavior of the material.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,