Article ID Journal Published Year Pages File Type
799719 Journal of the Mechanics and Physics of Solids 2010 15 Pages PDF
Abstract

Unidirectional nanocomposite structures with parallel staggered platelet reinforcements are widely observed in natural biological materials. The present paper is aimed at an investigation of the stiffness, strength, failure strain and energy storage capacity of a unidirectional nanocomposite with non-uniformly or randomly staggered platelet distribution. Our study indicates that, besides the volume fraction, shape, and orientation of the platelets, their distribution also plays a significant role in the mechanical properties of a unidirectional nanocomposite, which can be quantitatively characterized in terms of four dimensionless parameters associated with platelet distribution. It is found that, compared with other distributions, stairwise and regular staggering of platelets produce overall the most balanced mechanical properties, which might be a key reason why these structures are most widely observed in nature.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , , ,