Article ID Journal Published Year Pages File Type
79979 Solar Energy Materials and Solar Cells 2009 6 Pages PDF
Abstract

Our progress in amorphous/crystalline silicon (a-Si:H/c-Si) heterojunction solar cell technology and current understanding of fundamental device physics are presented. In a-Si:H/c-Si cells, device performance is strongly dependent on the quality of the a-Si:H/c-Si heterojunction. Four topics are crucial to minimize recombination at the junction and thereby maximize cell efficiency: wet-chemical pre-treatment of the c-Si surface prior to a-Si:H deposition; optimum a-Si:H doping; thermal and plasma post-treatments of the a-Si:H/c-Si structure. By optimizing these aspects using specifically developed characterization methods, we were able to realize (n)a-Si:H/(p)c-Si and (p)a-Si:H/(n)c-Si cells with up to 18.5% and 19.8% efficiency, respectively.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , ,