Article ID Journal Published Year Pages File Type
799810 Journal of the Mechanics and Physics of Solids 2009 18 Pages PDF
Abstract

A generalized potential-based constitutive model for mixed-mode cohesive fracture is presented in conjunction with physical parameters such as fracture energy, cohesive strength and shape of cohesive interactions. It characterizes different fracture energies in each fracture mode, and can be applied to various material failure behavior (e.g. quasi-brittle). The unified potential leads to both intrinsic (with initial slope indicators to control elastic behavior) and extrinsic cohesive zone models. Path dependence of work-of-separation is investigated with respect to proportional and non-proportional paths—this investigation demonstrates consistency of the cohesive constitutive model. The potential-based model is verified by simulating a mixed-mode bending test. The actual potential is named PPR (Park–Paulino–Roesler), after the first initials of the authors’ last names.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,