Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7999003 | Journal of Alloys and Compounds | 2015 | 9 Pages |
Abstract
Aqueous Ag:ZnCdS quantum dots (QDs) with pure, color-tunable fluorescence were prepared based on co-nucleation doping strategy by using a highly reactive S powder precursor, which was reduced by NaBH4 at high temperature of 180 °C in a closed hydrothermal autoclave. For a meaningful comparison, thiourea as a relatively low reactive precursor was employed to test the advantages of this highly reactive S powder precursor in synthetic chemistry. The influences of various experimental variables, including the Zn/Cd ratio and Ag-doping concentration, on the optical properties of Ag:ZnCdS QDs were systematically investigated. The color-tunable quarternary Ag:ZnCdSeS QDs were also successfully prepared via the variation of Se/S precursor ratio based on the similar reactivity of the Se and S powder precursors. Further, the highly efficient Ag:ZnCdS/ZnS and Ag:ZnCdSeS/ZnS core/shell QDs were constructed by the deposition of the ZnS shell around the crude Ag:ZnCdS and Ag:ZnCdSeS core QDs. The results indicated that this facile synthetic route would provide a versatile approach for preparation of other aqueous multinary metal chalcogenide QDs.
Related Topics
Physical Sciences and Engineering
Materials Science
Metals and Alloys
Authors
Ruosheng Zeng, Zhiguo Sun, Sheng Cao, Rongan Shen, Zuoji Liu, Jintao Long, Jinju Zheng, Yayun Shen, Xiangnan Lin,