Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7999171 | Journal of Alloys and Compounds | 2015 | 6 Pages |
Abstract
Using silicon nanoporous pillar array (Si-NPA) as substrates and boric acid as dopant source, a series of CdS/Si nanoheterostructures were prepared by growing B-doped CdS thin films on Si-NPA via a chemical bath deposition (CBD) method. The structural, optical and electrical properties of CdS/Si-NPA were studied as a function of the [B]/[Cd] ratio of the initial CBD solutions. Our results disclosed that B concentration could be tuned effectively through changing the ratio of [B]/[Cd], which would bring large variation on the optical and electrical properties of CdS/Si-NPA without affecting its crystal structure and surface morphology. The samples with optimal optical and electrical properties were prepared with [B]/[Cd]Â =Â 0.01, in which the physical properties of relatively strong light absorption, small electrical resistivity, low turn-on voltage, small leakage current density and high breakdown voltage could be obtained. These results indicated that B-doping might be an effective path for promoting the performance of the optoelectronic devices based on CdS/Si-NPA.
Related Topics
Physical Sciences and Engineering
Materials Science
Metals and Alloys
Authors
Ling Ling Yan, Xiao Bo Wang, Xiao Jun Cai, Xin Jian Li,