Article ID Journal Published Year Pages File Type
799923 Journal of the Mechanics and Physics of Solids 2009 20 Pages PDF
Abstract

Fracture of nanocrystalline metals with extremely small grain size is simulated in this paper by structural evolution. Two-dimensional scheme is formulated to study the competition between crack growth and blunting in nanocrystalline samples with edge cracks. The scheme couples the creep deformation induced by grain boundary (GB) mechanisms and the intergranular crack growth. The effects of material properties, initial configurations and applied loads are explored. Either the enhancement in diffusion mobility, or the deterrence in the grain boundary damage, would blunt the crack and decelerate its growth, and vice versa. The simulations agree with the analytical predictions as modified from that of Yang and Yang [2008. Brittle versus ductile transition of nanocrystalline metal. Int. J. Solids Struct. 45, 3897–3907]. Upon the suppression of dislocation activities, it is validated that the brittle versus ductile transition of nanocrystals is controlled by the development of grain boundary-dominated creep versus grain boundary decohesion. Further simulations found that either decreasing the grain sizes or increasing the dispersion of grain sizes would blunt the growing cracks.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,