Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8000624 | Journal of Alloys and Compounds | 2014 | 5 Pages |
Abstract
The relationship between the Mg/Ni ratio and microstructure of Mg-Ni films with a Pd-cap deposited by magnetron sputtering is investigated using transmission electron microscopy. As a result, the 6Mg-Ni films are observed to be composed of a Mg-rich amorphous matrix and Mg2Ni nanocrystals. In contrast, the 10Mg-Ni films contain Mg nanocrystals and Mg-rich amorphous. The 2Mg-Ni films, which absorb/desorb hydrogen repeatedly as well as 6Mg-Ni films, are fully amorphous and have a homogeneous distribution of Mg and Ni. The hydrogenated 6Mg-Ni film, after 200 cycles of hydrogenation/dehydrogenation, includes Mg2NiH4 and MgH2 nanocrystals as well as Mg crystals. In conclusion, the crystallization of Mg reduces desorption kinetics and cycle ability of the Mg-Ni films. Our results suggested that Mg crystallization occurs in films with an initial Mg/Ni ratio greater than 7.7 the eutectic composition between Mg and Mg2Ni.
Related Topics
Physical Sciences and Engineering
Materials Science
Metals and Alloys
Authors
Junko Matsuda, Naoki Uchiyama, Tomomi Kanai, Kazumi Harada, Etsuo Akiba,