Article ID Journal Published Year Pages File Type
8001120 Journal of Alloys and Compounds 2014 7 Pages PDF
Abstract
First principle calculations of electronic, Fermi surface, electronic charge density and optical properties of Quaternary Uranium Chalcogenides Rb2Pd3UM6 (M = S, Se) are performed using full potential linear augmented plane wave (FP-LAPW) method within the frame work of density functional theory. Using mBJ method, the electronic band curves overlap at Fermi level and show metallic band structure for both compounds. The calculated densities of states (DOS) spectra show that the valence band is mainly attributed to Rb-p, Pd-d and S-s/p or Se-s/p states; conduction band is mainly attributed to Pd-d, U-f and S-p or Se-p/d states. From the electronic charge density spectrum, it is revealed that a strong covalent bond exists between Pd and S, and Pd or Se while charge transfer between U and S, U and Se, Rb and S, and Rb and Se atoms results in ionic bond nature. It is noted from Fermi surface calculations that both compounds comprise same number of fast velocity electrons but differs in slow or intermediate velocity of electrons. The calculated frequency dependent dielectric function, energy loss function and reflectivity show a considerable anisotropy for both compounds.
Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , ,