Article ID Journal Published Year Pages File Type
8001919 Journal of Alloys and Compounds 2014 4 Pages PDF
Abstract
Nanocomposites containing Fe3O4/Fe/multiwalled carbon nanotubes (MWCNT) were prepared via an electrical wire pulse process (a top-down approach) using Fe wire and dispersed, functionalized MWCNT in deionized water (DIW) at room temperature. The structural and electrochemical characteristics of the resulting nanocomposites were investigated in detail. When used as an anode for Li ion batteries, the Fe3O4/Fe/MWCNT nanocomposites exhibited greater cycle stability and rate performance than plain Fe3O4/Fe composites, with a capacity of 460 mA h g−1 at a rate of 168 mA g−1 after 50 cycles. The enhanced performance was attributed to superior electrical conductivity and buffering effect of the MWCNTs on volume changes of the anodes. This process is a promising facile method for lithium ion battery anode material synthesis.
Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , , ,