Article ID Journal Published Year Pages File Type
8001948 Journal of Alloys and Compounds 2014 8 Pages PDF
Abstract
Pure and various Fe3+-doping TiO2 thin films have been successfully fabricated on glass substrate prepared by a sol-gel spin coating route. The structural and photodegradation behavior of these films after calcined at various temperatures for 1 h were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) spectrum and degradation of 1.0 × 10−5 M methylene blue solution. When all thin films after calcined at 823 K for 1 h, the crystalline phase are comprised only contained single phase of anatase TiO2. The crystallinity of various Fe3+-doping TiO2 thin films decreases with Fe3+-doping concentration increased. The PL intensity of all thin films also decreases with Fe3+-doping concentration increased. When all various Fe3+-doping TiO2 thin films after calcined at 823 K for 1 h, the photodegradation of each sample increases with irradiation time increased. Moreover, the photodegradation also increases with Fe3+-doping concentration increased when fixed at constant irradiation time.
Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , ,