Article ID Journal Published Year Pages File Type
80035 Solar Energy Materials and Solar Cells 2009 6 Pages PDF
Abstract

We study the fabrication of poly(3-hexylthiophene)—P3HT and [6,6]-phenyl-C61 butyric acid methyl ester—PCBM based polymer bulk heterojunction photovoltaic cells using rotogravure printing. By studying the dependencies of device performance on material and process parameters including contact angles, ink concentrations, ink viscosities, solvent characteristics, and gravure printing parameters, optimized hole transport layers [poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)—PEDOT:PSS] and active layers (P3HT:PCBM) are printed, resulting in devices with power conversion efficiencies as high as 1.68% under AM 1.5 G and a spectrally matched intensity of 100 mW/cm2.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , ,