Article ID Journal Published Year Pages File Type
800407 Mechanics of Materials 2007 14 Pages PDF
Abstract

A thermodynamic approach is used to derive the driving force on a domain wall in a piezoelectric material. Using 2D finite element simulations, the influence of different kinds of defects on the kinetics of a domain wall in ferroelectric–ferroelastic gadolinium molybdate, Gd2(MoO4)3Gd2(MoO4)3 (GMO), is studied. Results are compared with experiments conducted on single crystal GMO containing extensive bulk defects. It is found that domain wall movement is impeded for certain defects while it is virtually unaffected for others. Qualitatively, results are in good agreement with experimental findings.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , , , ,