Article ID Journal Published Year Pages File Type
8004337 Journal of Iron and Steel Research, International 2017 7 Pages PDF
Abstract
Three kinds of high Co-Ni secondary hardening steels with different Ni contents were studied. The nanoscale austenite layers formed at the interface of matensite laths were observed. Both observation and diffusion kinetic simulation results showed that both Ni and Co did not obtain enough time to get the equilibrium content in this system. The Ni content in austenite layers decreased significantly, and Co content increased slightly with the decrease of Ni content in overall composition. The austenite stability was estimated by Olson-Cohen model, in which both chemical and mechanical driving force could be calculated by equilibrium thermodynamic and Mohr's circle methods, respectively. Simulation and mechanical test results showed that the decrease of Ni content in austenite layers would cause the change of austenite stability and decrease the fracture toughness of the steels. When the Ni content in the overall composition was lower than 7 wt. %, the Ni content in y phase would be lower than 20 wt. %. And the simulation value of Msσ (stress-induced critical martensite transformation temperature) would be up to 80 °C, which was about 60 °C higher than room temperature. Based on the analysis, the Ni content in the overall composition of high Co-Ni secondary hardening steels should be higher than 8 wt. % in order to obtain a good fracture toughness.
Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , ,