Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8004497 | Journal of Iron and Steel Research, International | 2016 | 8 Pages |
Abstract
Effects of friction stir processing (FSP) parameters and reinforcements on the wear behavior of 6061-T6 based hybrid composites were investigated. A mathematical formulation was derived to calculate the wear volume loss of the composites. The experimental results were contrasted with the results of the proposed model. The influences of sliding distance, tool traverse and rotational speeds, as well as graphite (Gr) and titanium carbide (TiC) volume fractions on the wear volume loss of the composites were also investigated using the prepared formulation. The results demonstrated that the wear volume loss of the composites significantly increased with increasing sliding distance, tool traverse speed, and rotational speed; while the wear volume loss decreased with increasing volume fraction of the reinforcements. A minimum wear volume loss for the hybrid composites with complex reinforcements was specified at the inclusion ratio of 50% TiC + 50% Al2O3 because of improved lubricant ability, as well as resistance to brittleness and wear. New possibilities to develop wear-resistant aluminum-based composites for different industrial applications were proposed.
Related Topics
Physical Sciences and Engineering
Materials Science
Metals and Alloys
Authors
Halil Ibrahim KURT, Murat ODUNCUOGLU, Ramazan ASMATULU,