Article ID Journal Published Year Pages File Type
800474 Mechanics of Materials 2010 12 Pages PDF
Abstract

This paper deals with the mechanical behavior of semi-crystalline polymer films at high temperature (90 °C) in finite plastic strains. Due to the complex morphology of such materials, standard elastoplastic formulations are not suitable for describing in a unified way their uniaxial and biaxial tensile behaviors which involve specific physical phenomena. According to physical considerations concerning the mesoscopic semi-crystalline structure of such polymers, a constitutive model has been specially developed, with the idea of a three-phase morphology in relation to the average distance between crystalline blocks. A quite classical constitutive law is used to describe the mechanical (hyper)-elastic and/or plastic behavior of each phase (an eight-chain “network” model is employed). As a key of the work, a “multi-axial factor” is introduced, in the context of perfect plasticity, so as to relate the threshold stress and the deformation mode, considering the effect of entanglements. Uniaxial and equi-biaxial tensile experimental tests have been performed using two materials: polyamide 6 and polyethylene. Model parameters are calibrated using uniaxial stress–strain experimental curves. Then, the biaxial simulation curves are shown to be in very good agreement with the corresponding experimental results.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , ,