Article ID Journal Published Year Pages File Type
800567 Mechanics of Materials 2008 7 Pages PDF
Abstract

The thermo-mechanical aspects of adiabatic shear band (ASB) formation are studied for two commercial alloys: Mg AM50 and Ti6Al4V. Tests are carried out on shear compression specimens (SCS). The evolution of the temperature in the deforming gauge section is monitored in real-time, using an array of high-speed infrared detectors synchronized with a Kolsky apparatus (split Hopkinson pressure bar). The evolution of the gage temperature is found to comprise three basic stages, in agreement with Marchand and Duffy’s simultaneous observations of mechanical data and gauge deformation patterns (1988). The onset and full formation stages of ASB are identified by combining the collected thermal and mechanical data. Full development of the ASB is identified as the point at which the measured and calculated temperature curves intersect and diverge thereon. At that stage, the homogeneous strain assumption used in calculating the maximum temperature rise is no longer valid.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,