Article ID Journal Published Year Pages File Type
800636 Mechanics of Materials 2007 16 Pages PDF
Abstract

The effect of damage due to particle debonding on the constitutive response of highly filled composites is investigated using two multiscale homogenization schemes: one based on a closed-form micromechanics solution, and the other on the finite element implementation of the mathematical theory of homogenization. In both cases, the particle debonding process is modeled using a bilinear cohesive law which relates cohesive tractions to displacement jumps along the particle–matrix interface. The analysis is performed in plane strain with linear kinematics. A detailed comparative assessment between the two homogenization schemes is presented, with emphasis on the effect of volume fraction, particle size and particle-to-particle interaction.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , , ,