Article ID Journal Published Year Pages File Type
800753 Mechanics of Materials 2011 12 Pages PDF
Abstract

Composites with cellulose reinforcements are steadily gaining increased use. The stress transfer ability between reinforcement and polymer matrix has a strong influence on mechanical properties like strength and fracture toughness. This work presents a method to assess the stress transfer ability between cellulose and polymer matrix from a model material with cellulose spheres embedded in a polymer matrix. Such a material show smaller variability compared with composites based on natural cellulose fibres, and is less cumbersome than single fibre tests with regard to interfacial characterization. Measured elastic moduli of particulate composites is compared with predicted values from a micromechanical model based on a composite sphere assembly in a self-consistent scheme with only a spring constant of an imperfect interface as fitting parameter expressed in Pa/m. This interface parameter is identified through inverse modelling and used to quantify stress-transfer ability of cellulose/polylactide and cellulose/polystyrene composite interfaces. A higher degree of interfacial interaction was found for the former. This ranking was corroborated by adhesive force measurements using a micrometre sized cellulose sphere attached to the end of a cantilever in an atomic force microscope. With the model microstructure of a cellulose-sphere composite, an interfacial efficiency parameter can be backed out from stiffness measurements to be used in e.g. ranking of different fibre surface treatments and choice of matrix in the development of stronger natural-fibre composites.

► New method to quantify interfacial stress-transfer in a cellulose/polymer composite from macroscopically measured stiffness. ► The stress-transfer parameter of the composite is favourably compared to AFM probe tests for cellulose/PS and cellulose/PLA. ► The method could be used in materials development when ranking wood fibre surface treatments for composite applications.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , , ,