Article ID Journal Published Year Pages File Type
800936 Mechanics Research Communications 2013 4 Pages PDF
Abstract

The challenge of describing in a generalized mathematical pattern the inelastic behavior of metals has led to the development of several constitutive models, especially in the field of cyclic plasticity, where phenomena with particular importance to low-cycle fatigue appear. Significant research efforts have been undertaken in studying and simulating the cyclic elastoplastic response of steels, while light metals, like aluminum and titanium, have attracted less attention. This paper provides a preliminary examination on the capacity of the Multi-component Armstrong and Frederick Multiplicative (MAFM) model to simulate effectively the cyclic mean stress relaxation and ratcheting of Aluminum Alloy 7050. The derived results indicate that the model is capable to describe successfully the complex cyclic plasticity phenomena exhibited by this alloy.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,