Article ID Journal Published Year Pages File Type
800951 Mechanics of Materials 2009 11 Pages PDF
Abstract

We examine the microscopic toughening mechanisms and their effect on the macroscopic failure response of heterogeneous adhesives made of stiff particles embedded in a more compliant matrix. The analysis relies on a multi-scale cohesive framework first described in Matouš et al. [Matouš, K., Kulkarni, M., Geubelle, P., 2008. Multiscale cohesive failure modeling of heterogeneous adhesives. Journal of the Mechanics and Physics of Solids 56, 1511–1533]. Two microscopic constitutive failure models are incorporated: an isotropic damage model to capture the fracture response of the matrix and a cohesive law to model the inclusion-matrix interfacial debonding. A detailed study of the RVE size is presented followed by a set of examples that illustrate the effect of filler size, volume fraction and particle–matrix interface properties on the macroscopic effective traction-separation law of heterogeneous adhesives.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,