Article ID Journal Published Year Pages File Type
801061 Mechanics Research Communications 2006 7 Pages PDF
Abstract

The normality structure proposed by [Rice, J.R., 1971. Inelastic constitutive relations for solids: an integral variable theory and its application to metal plasticity. J. Mech. Phys. Solids 19, 433–455.] provides a minimal framework of multiscale thermodynamics. As shown in this paper, Rice’s multiscale thermodynamic formalism is exactly consistent with Ziegler’s essential notion [Ziegler, H., 1977. An Introduction to Thermomechanics, North-Holland, Amsterdam.] that the entire constitutive response is determined by the knowledge of two scalar potential functions: an energy function and a dissipation function. In Rice’s multiscale thermodynamic formulation, the variational equation relating macroscale and microscale thermodynamic fluxes and forces plays a central role and ensures the equality between microscale and macroscale dissipation rate. The variational equation can be further reformulated into a principle of maximum equivalent dissipation. Based on the variation equation, the transformation from microscale to macroscale is characterized by two linear transformations with the same corresponding matrix.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,