| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 8011969 | Transactions of Nonferrous Metals Society of China | 2017 | 9 Pages |
Abstract
To improve the bioactivity of Ti-Nb-Zr alloy, Ti-35Nb-7Zr-xHA (hydroxyapatite, x=5, 10, 15 and 20, mass fraction, %) composites were fabricated by spark plasma sintering. The effects of the HA content on microstructure, mechanical and corrosion properties of the composites were investigated utilizing X-ray diffraction (XRD), scanning electron microscope (SEM), mechanical tests and electrochemical tests. Results show that all sintered composites are mainly composed of β-Ti matrix, α-Ti and metal-ceramic phases (CaO, CaTiO3, CaZrO3, TixPy, etc). Besides, some residual hydroxyapatites emerge in the composites (15% and 20% HA). The compressive strengths of the composites are over 1400 MPa and the elastic moduli of composites ((5%-15%) HA) present appropriate values (46-52 GPa) close to that of human bones. The composite with 15% HA exhibits low corrosion current density and passive current density in Hank's solution by electrochemical test, indicating good corrosion properties. Therefore, Ti-35Nb-7Zr-15HA composite might be an alternative material for orthopedic implant applications.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Metals and Alloys
Authors
Zheng-yuan HE, Lei ZHANG, Wen-rui SHAN, Yu-qin ZHANG, Rong ZHOU, Ye-hua JIANG, Jun TAN,
