Article ID Journal Published Year Pages File Type
8012006 Transactions of Nonferrous Metals Society of China 2017 11 Pages PDF
Abstract
Nanocrystalline and amorphous LaMg11Ni+x% Ni (x=100, 200, mass fraction) alloys were synthesized by mechanical milling. The electrochemical hydrogen storage properties of the as-milled alloys were tested by an automatic galvanostatic system. The gaseous hydrogen absorption and desorption properties were investigated by Sievert's apparatus and differential scanning calorimeter (DSC) connected with a H2 detector. The results indicated that increasing Ni content significantly improves the gaseous and electrochemical hydrogen storage performances of the as-milled alloys. The gaseous hydrogen absorption capacities and absorption rates of the as-milled alloys have the maximum values with the variation of the milling time. But the hydrogen desorption kinetics of the alloys always increases with the extending of milling time. In addition, the electrochemical discharge capacity and high rate discharge (HRD) ability of the as-milled alloys both increase first and then decrease with milling time prolonging.
Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , , , ,