Article ID Journal Published Year Pages File Type
801386 Precision Engineering 2010 8 Pages PDF
Abstract

Piezoelectric (PZT) actuators having the characteristic of infinitely small displacement resolution are popularly applied as actuators in precision positioning systems. Due to its nonlinear hysteresis effect, the tracking control accuracy of the precision positioning system is difficultly achieved. Hence, it is desirable to take hysteresis effect into consideration for improving the trajectory tracking performance. In this paper, a model reference adaptive control scheme based on hyperstability theory is developed for a moving stage system driven by a PZT actuator. It is worth emphasizing that the controller can be constructed without a nonlinear hysteresis dynamic equation to compensate the hysteresis effect. According to simulation results, the tracking error was only nanometer order. Through experimental examinations, the tracking performance was obtained as precision as ten nanometers order which is the resolution limitation of the measurement system. The effectiveness of the proposed adaptive control scheme was validated.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , ,