Article ID Journal Published Year Pages File Type
8014206 Materials Letters 2018 16 Pages PDF
Abstract
Although biological membranes may look like a 2D assembly, they often have complex structures in their 3rd dimension. Using layer-by-layer assembly, 3D-printing can offer an advanced and unique approach for the fabrication of such models. However, printing of some widely used hydrogels, such as gelatin, encounters experimental difficulties due to their rheological properties. In this paper, we (a) discuss the complexities involved in printing gelatin, (b) offer a reproducible approach to overcome such difficulties, and (c) present the detailed design criteria and the production process of such 3D-printed gelatin membranes by exemplifying scaffolds suitable for growth of full-thickness oral mucosa as a heterogeneous tissue.
Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , ,