Article ID Journal Published Year Pages File Type
801605 Mechanics Research Communications 2011 6 Pages PDF
Abstract

Parallel computing techniques are employed to investigate wave propagation in three-dimensional functionally graded media. In order to obtain effective and efficient parallel finite element mesh representation, a topology-based data structure (TopS) and a parallel framework for unstructured mesh (ParFUM) are integrated. The parallel computing framework is verified by solving a cantilever example, while the Rayleigh wave speed in functionally graded media is investigated by comparing the results with the homogeneous case. The computational results illustrate that when the elastic modulus of a graded media increase along the depth direction, the Rayleigh wave speed of a graded media is higher than the speed of a homogeneous media with the same material properties on the surface.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,