Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
801674 | Mechanics Research Communications | 2010 | 7 Pages |
The equilibrium problem of unreinforced masonry vaults is analyzed via a constrained thrust network approach. The masonry structure is modeled as no-tension membrane (thrust surface) carrying a discrete network of compressive singular stresses, through a non-conforming variational approximation of the continuous problem. The geometry of the thrust surface and the associated stress field are determined by means of a predictor–corrector procedure based on polyhedral approximations of the thrust surface and membrane stress potential. The proposed procedure estimates the regions exposed to fracture damage according to the no-tension model of the masonry. Some numerical results on the thrust network and crack pattern of representative vault schemes are given.