Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
801706 | Mechanics Research Communications | 2009 | 8 Pages |
Abstract
The focus of this contribution is to develop a semi-analytical method to solve the scattering of wave by a circular pipeline embedded in a poroelastic medium. The harmonic equations for the poroelastic medium are derived in the context of Biot’s theory. Then these equations are solved by reducing to Helmholtz equations that the potentials satisfy. The lining structure can use the elastic material and decouple into two Helmholtz equations. Utilizing the wave function expansion method, the general solutions of Helmholtz equations can be obtained. By using the boundary and continuity conditions between the poroelastic medium and the lining, the unknown coefficients can be determined.
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Mechanical Engineering
Authors
Xiang-Lian Zhou, Jian-Hua Wang, Bin Xu, Ling-Fa Jiang,