Article ID Journal Published Year Pages File Type
801887 Mechanics Research Communications 2008 7 Pages PDF
Abstract

Low temperature ion bombardment of initially crystalline, defect-free silicon with 700 eV ion beam energy creates a highly-damaged stressed layer a few nanometers thick on the surface. An apparent steady state in structure is achieved at a fluence of 2 × 1014–3 × 1014 ions/cm2. In this work, the stresses are computed using the interatomic force definition of stress. The stress evolution is studied as a function of argon implantation into the target. Stress per implanted argon atom is observed to reach a nearly constant value between 20 MPa and 25 MPa at a fluence of 1.2 × 1014 ions/cm2.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , ,