Article ID Journal Published Year Pages File Type
801889 Mechanics Research Communications 2008 8 Pages PDF
Abstract

It is shown in this paper that interfacial effects have a profound impact on the scale-dependent yield strength and strain hardening rates (flow stress) of metallic thin films on elastic substrates. This is achieved by developing a higher-order strain gradient plasticity theory based on the principle of virtual power and the laws of thermodynamics. This theory enforces microscopic boundary conditions at interfaces which relate a microtraction stress to the interfacial energy at the interface. It is shown that the film bulk length scale controls the size effect if a rigid interface is assumed whereas the interfacial length scale dominates if a compliant interface is assumed.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
,