Article ID Journal Published Year Pages File Type
80242 Solar Energy Materials and Solar Cells 2007 12 Pages PDF
Abstract

Prototype first generation Photovoltaic Facades of Reduced Costs Incorporating Devices with Optically Concentrating Elements (PRIDE) technology incorporating 3 and 9 mm wide single crystal silicon solar cells showed excellent power output compared to a similar non-concentrating system when it was characterized both indoors using a flash and continuous solar simulator. However, durability and instability of the dielectric material occurred in long-term characterisation when the concentrator was made by using casting technology. For large scale manufacturing process, durability, and to reduce the weight of the concentrator, second generation PRIDE design incorporated 6 mm wide “Saturn” solar cells at the absorber of dielectric concentrators. Injection moulding was used to manufacture 3 kWp of such PV concentrator module for building façade integration in Europe. Special design techniques and cost implications are implemented in this paper. A randomly selected PV concentrator was characterised at outdoors from twenty-four (≈3 kWp) 2nd-G PRIDE manufactured concentrators. The initial PV concentrators achieved a power ratio of 2.01 when compared to a similar non-concentrating system. The solar to electrical conversion efficiency achieved for the PV panel was 10.2% when characterised outdoors. In large scale manufacturing process, cost reduction of 40% is achievable using this concentrator manufacturing technology.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, ,