Article ID Journal Published Year Pages File Type
8024563 Surface and Coatings Technology 2018 33 Pages PDF
Abstract
In this paper, electrolytic potentiostatic deposition of metallic Mn layers from environmentally friendly aqueous manganese sulfate electrolytes with pH 3 is successfully demonstrated. A continuous electrolyte flow in the cathodic compartment of the electrochemical cell for controlling the pH value during deposition was found to be essential for achieving good layer qualities. Based on cyclic voltammetry analysis in combination with quartz crystal microbalance measurements a suitable deposition potential range was identified. The obtained electrodeposited layers were characterized by means of SEM, XRD, GD-OES and XPS. The shift of the deposition potential from − 2.4 VMSE to − 2.6 VMSE (deposition time 60 min) yields a thickness increase of the metallic α-Mn deposits from < 500 nm to ~ 2 μm. Only thin additional surface regions of Mn-oxides/-hydroxides were identified. The important role of (NH4)2SO4 as complex-forming electrolyte additive is discussed and an impact of the salt concentration on the deposit properties is revealed. This is a promising starting point for further Mn alloy deposition analysis.
Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , , , ,