Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8024732 | Surface and Coatings Technology | 2017 | 35 Pages |
Abstract
The article reports on the effect of the energy delivered into the growing film by bombarding ions â°bi and/or fast neutrals â°fn on its structure, microstructure and mechanical properties, and resistance to cracking. The effect of the total delivered energy â°Â = â°bi + â°fn on the film properties is demonstrated on the Ti(Al,V)Nx films deposited by reactive magnetron sputtering. The films were sputtered onto Si(111) and Mo substrates in a mixture Ar + N2 gases by a dual magnetron with closed magnetic field and equipped with TiAlV (6 at.% Al, 4 at.% V) alloy targets. It was shown that (1) The energy â° is a key parameter controlling the physical and mechanical properties, and the resistance to cracking of sputtered Ti(Al,V)Nx films, (2) The structure of Ti(Al,V)Nx films varies from TiN(200) to TiN(220) with increasing energy â°, (3) The Ti(Al,V)Nx films with high ratio H/Eâ â¥Â 0.1, high elastic recovery We â¥Â 60% and dense voids-free microstructure exhibit an enhanced resistance to cracking and can be produced only in the case when a sufficient energy â° is delivered into the growing film either by bombarding ions or by bombarding fast neutrals and (4) The energy â°fn makes it possible to sputter crystalline films onto dielectric substrates held at a floating potential Us = Ufl.
Related Topics
Physical Sciences and Engineering
Materials Science
Nanotechnology
Authors
M. JaroÅ¡, J. Musil, R. Äerstvý, S. Haviar,