Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8024759 | Surface and Coatings Technology | 2017 | 7 Pages |
Abstract
Al and Al alloys exhibit low wear resistance although they are used in a wide range of automobile and aerospace industries. Therefore, in this study, transition metal nitride films were deposited using Closed Field Unbalanced Magnetron Sputtering (CFUBMS) system on this metal alloy in order to improve the wear resistance. The structural properties of the films were analyzed by XRD, SEM, EDS and AFM. The hardness values of the films were determined with a nanohardness test. A pin-on-disc tribometer was used to determine the friction and wear behavior of the films under different conditions: 50% RH in air and argon gas. Ti [Nb, V] N films on the Al-2024 alloys exhibited very dense and columnar microstructure. The lowest surface roughness, the highest film thickness and hardness values were obtained as 49Â nm, 440Â nm and 12Â GPa from TiNbVN film, respectively. Also, TiNbVN film exhibited the lowest friction coefficient values under different tribo-test conditions. The thickness and hardness values of TiNbN film were 400Â nm and 9.6Â GPa, respectively. TiVN film with the lowest thickness (360Â nm) and hardness (6Â GPa) showed the highest friction coefficients under both conditions. The indenter penetration values were 18.75%, 26.4% and 15.23% for TiNbN, TiVN and TiNbVN films, respectively. Wear behavior of the films was significantly affected from the film thickness, hardness, surface roughness and friction coefficient values.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Nanotechnology
Authors
Ãzlem Baran, AyÅenur KeleÅ, Hikmet Ãiçek, YaÅar Totik, İhsan EfeoÄlu,