Article ID Journal Published Year Pages File Type
8025518 Surface and Coatings Technology 2016 12 Pages PDF
Abstract
The residual stress and failure mode of thermal barrier coating (TBC) containing metallic bond coat (BC) and ceramic top coat (TC) with and without thermally grown oxide (TGO) were predicted using a micromechanical-based finite element method (FEM). Actual microstructures of the TBC taken by a scanning electron microscope (SEM) were utilized as the representative volume elements (RVEs) in the computational model. Failure mode of the representative volume was numerically simulated as thermal stress localization during thermal cycle. Computations were done on the representative volume to quantitatively assess the effects of thermal and mechanical properties of the TBC constituents as well as the presence of TGO on the macroscopic mechanical response of the TBC. Comparisons of computed results with experiments verified that, the computational method can successfully predict residual stress and crack initiation mode of the studied thermal barrier coatings. Moreover, based on the computed results, both shear and normal failure mode occur in the thermal barrier coating which is in good agreement with experimental findings.
Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , ,