Article ID Journal Published Year Pages File Type
8025691 Surface and Coatings Technology 2016 8 Pages PDF
Abstract
This work reveals the influence of heat treatments on the microstructure, mechanical properties and abrasive wear behaviour of a Cr3C2NiCr coating deposited by an ethene-fuelled high-velocity oxygen-fuel spray process using an agglomerated-and-sintered feedstock powder. The wear resistance of an as-sprayed and heat treated (8 h at 800 °C) coating was evaluated in low- and high-stress abrasion regimes, the latter in a temperature range up to 800 °C. Precipitation of secondary carbides from the supersaturated as-sprayed binder matrix is at the core of the observed changes in the coatings wear resistance upon heat treating. This aging process renders the binder matrix softer and more ductile, as was probed by means of nanoindentation, and thereby improves its resistance against micro-cracking which is identified as an important wear mechanism in high-stress abrasion conditions.
Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , ,