Article ID Journal Published Year Pages File Type
802607 Probabilistic Engineering Mechanics 2006 16 Pages PDF
Abstract

The focus of this paper is Bayesian state and parameter estimation using nonlinear models. A recently developed method, the particle filter, is studied that is based on stochastic simulation. Unlike the well-known extended Kalman filter, the particle filter is applicable to highly nonlinear models with non-Gaussian uncertainties. Recently developed techniques that improve the convergence of the particle filter simulations are introduced and discussed. Comparisons between the particle filter and the extended Kalman filter are made using several numerical examples of nonlinear systems. The results indicate that the particle filter provides consistent state and parameter estimates for highly nonlinear models, while the extended Kalman filter does not.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,